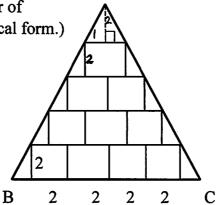

<u>Directions:</u> Place your answer to each question below in the answer column.

- 1) If $\langle a,b,c \rangle$ means (a-b)-(a-c)-(b+c), then $\langle x, 8, y \rangle =$ _____ in simplest form.
- 1)
- Find the sum of the first 8 digits to the right of the decimal point in the decimal representation of $\frac{25}{99}$.


If $3^x = a$, express 3^{2x+1} in terms of a. 3)

- 3)
- The positive number _____ is equal to four-fifths of the sum of the number 4) and its reciprocal.

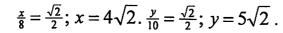
 $\Delta A \sim \Delta B$. The area of $\Delta A = 20$ sq. ft. Find x and y in simplest radical form.

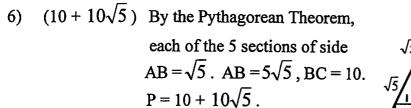
A stack of 2" squares are placed inside an isosceles triangle ($\overline{AB} \cong \overline{AC}$), as shown. The perimeter of ΔABC is ______". (Leave your answer in radical form.)

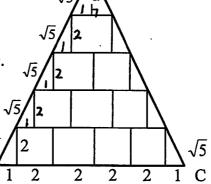
CI PYTHAGOREAN DIVISION MEET 3 JANUARY 8, 2015 SOLUTIONS GRADE 9

The answer to each question is in parentheses at the beginning of each solution.

1) (-16)
$$\langle x, 8, y \rangle = (x - 8) - (x - y) - (8 + y) = -16.$$


2) (28)
$$^{25}/_{99} = .\overline{25}$$
. The 1st 8 digits to the right of the decimal point are 2 and 5 four times. $(2+5) \times 4 = 28$.


3)
$$(3a^2)$$
 $3^{2x+1} = 3 \cdot 3^{2x} = 3 \cdot (3^x)^2 = 3a^2$.


4) (2)
$$x = \frac{4}{5}(x + \frac{1}{x}) = \frac{4}{5}x + \frac{4}{5x}$$
. $\frac{1}{5}x = \frac{4}{5x}$; $x = \frac{4}{x}$; $x^2 = 4$; $x = 2$.

The area of
$$\Delta B = \frac{1}{2} (8')(10') = 40 \text{ sq. ft.}$$

$$\frac{\text{area } \Delta A}{\text{area } \Delta B} = \frac{20}{40} = \frac{1}{2} \cdot \frac{\text{side of } \Delta A}{\text{side of } \Delta B} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}.$$

